60
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      scite_
       
      • Record: found
      • Abstract: found
      • Poster: found
      Is Open Access

      Investigating the role of ethanolamine plasmalogen lipid in zebrafish brain by interdisciplinary lipidomics

      Published
      poster
      Bookmark

            Abstract

            Neurolipidomics 1, an evolving field at the intersection between lipid research and neuroscience, aims to offer insights into brain lipid function and thus inform the diagnosis and treatment of neurological disorders. Lipids, encompassing fatty acids, cholesterol, and phospholipids play a pivotal role in glial and neuronal cell function. Dysregulated lipid metabolism has been implicated in neurodegenerative diseases including Alzheimer’s 2,3. Notably, ethanolamine plasmalogen, a sub-class of brain phospholipids, shows a close association with Alzheimer’s disease, with decreased levels correlating with cognitive decline and disease severity 4.

            Zebrafish ( Danio rerio), with its nervous system akin to humans, high fecundity, and short generation time is a popular model organism in neuroscience 5. With a fully sequenced genome, and transparent embryo facilitating developmental studies, Zebrafish can be easily experimentally manipulated and visualised 6. Both adult and larval stages can be studied to further enhance our understanding of brain development and aging, function, and dysfunction 7. Despite being a powerful tool for neuroscience research, the lipid composition of Zebrafish remains inadequately characterized. Specifically, there is conflicting evidence regarding the presence of plasmalogen ethanolamine (PEp) in this model 8,9. Nevertheless plasmalogen, and specifically PEp, are known to be present in fish 10.

            Our research aims to investigate the role of plasmalogen lipids in the brain. Therefore, the existing gap of knowledge about the lipid composition of the zebrafish brain prompted us to utilise shotgun lipidomics to characterise the lipidome of zebrafish during development and in the adult brain. Our first objective was to provide conclusive evidence of the presence of PEp in the model, legalising its use to study the effect of brain plasmalogen deficiency in vivo.

            We have therefore collected Zebrafish larvae at different stages of development (0, 24, 48, 72 hours, and 5 days, post-fertilisation) as well as dissected brains from adult fish (3 months, M/F). Samples were subjected to lipid extraction according to the Bligh and Dyer method. Lipid extracts were analysed by targeted ESI-HRAM-MS/MS shotgun lipidomics using an LTQ-Orbitrap XL (ThermoFisher Scientific) coupled with a TriVersa NanoMate (Advion Biosciences) following established methods 11. PEp species identification is confirmed by both MS n analyses 12 and sensitivity to mild acid hydrolysis 13.

            Our preliminary data indicates plasmalogen PE is present in zebrafish larvae throughout development and later in the adult brain, warranting the use of this in vivo model for studying the role of brain plasmalogen. Next steps will encompass characterising the lipidome in the aging fish and the use gene silencing to deplete plasmalogen levels. Molecular and functional readouts will be implemented to probe brain plasmalogen biochemistry and relate to function.

            Investigating the role of ethanolamine plasmalogen lipid in the zebrafish brain

            Angelo Robles, Iwan Gane, David Lamb, Emma Kenyon, Roberto Angelini.

            Medical School, Swansea University, Swansea, SA2 8PP, UK.

            Neurolipidomics 1, an evolving field at the intersection between lipid research and neuroscience, aims to offer insights into brain lipid function and thus inform the diagnosis and treatment of neurological disorders. Lipids, encompassing fatty acids, cholesterol, and phospholipids play a pivotal role in glial and neuronal cell function. Dysregulated lipid metabolism has been implicated in neurodegenerative diseases including Alzheimer’s 2,3. Notably, ethanolamine plasmalogen, a sub-class of brain phospholipids, shows a close association with Alzheimer’s disease, with decreased levels correlating with cognitive decline and disease severity 4.

            Zebrafish ( Danio rerio), with its nervous system akin to humans, high fecundity, and short generation time is a popular model organism in neuroscience 5. With a fully sequenced genome, and transparent embryo facilitating developmental studies, Zebrafish can be easily experimentally manipulated and visualised 6. Both adult and larval stages can be studied to further enhance our understanding of brain development and aging, function, and dysfunction 7. Despite being a powerful tool for neuroscience research, the lipid composition of Zebrafish remains inadequately characterized. Specifically, there is conflicting evidence regarding the presence of plasmalogen ethanolamine (PEp) in this model 8,9. Nevertheless plasmalogen, and specifically PEp, are known to be present in fish 10.

            Our research aims to investigate the role of plasmalogen lipids in the brain. Therefore, the existing gap of knowledge about the lipid composition of the zebrafish brain prompted us to utilise shotgun lipidomics to characterise the lipidome of zebrafish during development and in the adult brain. Our first objective was to provide conclusive evidence of the presence of PEp in the model, legalising its use to study the effect of brain plasmalogen deficiency in vivo.

            We have therefore collected Zebrafish larvae at different stages of development (0, 24, 48, 72 hours, and 5 days, post-fertilisation) as well as dissected brains from adult fish (3 months, M/F). Samples were subjected to lipid extraction according to the Bligh and Dyer method. Lipid extracts were analysed by targeted ESI-HRAM-MS/MS shotgun lipidomics using an LTQ-Orbitrap XL (ThermoFisher Scientific) coupled with a TriVersa NanoMate (Advion Biosciences) following established methods 11. PEp species identification is confirmed by both MS n analyses 12 and sensitivity to mild acid hydrolysis 13.

            Our preliminary data indicates plasmalogen PE is present in zebrafish larvae throughout development and later in the adult brain, warranting the use of this in vivo model for studying the role of brain plasmalogen. Next steps will encompass characterising the lipidome in the aging fish and the use gene silencing to deplete plasmalogen levels. Molecular and functional readouts will be implemented to probe brain plasmalogen biochemistry and relate to function.

            References:

            1. Han, X. Neurolipidomics: challenges and developments. Front Biosci 12, 2601–2615 (2007).

            2. Jones, L., Harold, D. & Williams, J. Genetic evidence for the involvement of lipid metabolism in Alzheimer’s disease. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1801, 754–761 (2010).

            3. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51, 414–430 (2019).

            4. Kling, M. A. et al. Circulating ethanolamine plasmalogen indices in Alzheimer’s disease: Relation to diagnosis, cognition, and CSF tau. Alzheimers Dement 16, 1234–1247 (2020).

            5. Stewart, A. M., Braubach, O., Spitsbergen, J., Gerlai, R. & Kalueff, A. V. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 37, 264–278 (2014).

            6. Xi, Y., Noble, S. & Ekker, M. Modeling Neurodegeneration in Zebrafish. Curr Neurol Neurosci Rep 11, 274–282 (2011).

            7. Kalueff, A. V, Stewart, A. M. & Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35, 63–75 (2014).

            8. Van Amerongen, Y. F. et al. Zebrafish brain lipid characterization and quantification by 1H nuclear magnetic resonance spectroscopy and MALDI-TOF mass spectrometry. Zebrafish 11, 240–247 (2014).

            9. Fraher, D. et al. Zebrafish Embryonic Lipidomic Analysis Reveals that the Yolk Cell Is Metabolically Active in Processing Lipid. Cell Rep 14, 1317–1329 (2016).

            10. Chen, Z., Jia, J., Wu, Y., Chiba, H. & Hui, S.-P. LC/MS analysis of storage-induced plasmalogen loss in ready-to-eat fish. Food Chem 383, 132320 (2022).

            11. Nielsen, I. Ø. et al. Comprehensive Evaluation of a Quantitative Shotgun Lipidomics Platform for Mammalian Sample Analysis on a High-Resolution Mass Spectrometer. J Am Soc Mass Spectrom 31, (2020).

            12. Hsu, F.-F. Mass spectrometry-based shotgun lipidomics - a critical review from the technical point of view. Anal Bioanal Chem 410, 6387–6409 (2018).

            13. Han, X., Yang, K., Cheng, H., Fikes, K. N. & Gross, R. W. Shotgun lipidomics of phosphoethanolamine-containing lipids in biological samples after one-step in situ derivatization. J Lipid Res 46, (2005).

            Content

            Author and article information

            Journal
            ScienceOpen Posters
            ScienceOpen
            30 April 2024
            Affiliations
            [1 ] Swansea Unibersity;
            [2 ] Swansea University;
            Author notes
            Author information
            https://orcid.org/0009-0006-5008-7281
            https://orcid.org/0009-0004-3758-2822
            https://orcid.org/0000-0001-5446-2997
            https://orcid.org/0000-0002-3898-1866
            https://orcid.org/0000-0001-5136-5921
            Article
            10.14293/P2199-8442.1.SOP-.PWMATS.v1
            f00fd839-a600-4b6f-a5b9-2d7247beb341

            This work has been published open access under Creative Commons Attribution License CC BY 4.0 , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Conditions, terms of use and publishing policy can be found at www.scienceopen.com .

            History
            : 30 April 2024
            Funding
            Funded by: funder-id http://dx.doi.org/10.13039/501100001317, Swansea University;
            Categories

            The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
            Chemistry,Life sciences
            Neuroscience,Zebrafish,Neurolipidomics,Plasmalogen,Lipidomics

            References

            1. Han Xianlin. Neurolipidomics: challenges and developments. Frontiers in Bioscience. Vol. 12(1)2007. IMR Press. [Cross Ref]

            2. Jones Lesley, Harold Denise, Williams Julie. Genetic evidence for the involvement of lipid metabolism in Alzheimer's disease. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. Vol. 1801(8):754–761. 2010. Elsevier BV. [Cross Ref]

            3. Kunkle Brian W., Grenier-Boley Benjamin, Sims Rebecca, Bis Joshua C., Damotte Vincent, Naj Adam C., Boland Anne, Vronskaya Maria, van der Lee Sven J., Amlie-Wolf Alexandre, Bellenguez Céline, Frizatti Aura, Chouraki Vincent, Martin Eden R., Sleegers Kristel, Badarinarayan Nandini, Jakobsdottir Johanna, Hamilton-Nelson Kara L., Moreno-Grau Sonia, Olaso Robert, Raybould Rachel, Chen Yuning, Kuzma Amanda B., Hiltunen Mikko, Morgan Taniesha, Ahmad Shahzad, Vardarajan Badri N., Epelbaum Jacques, Hoffmann Per, Boada Merce, Beecham Gary W., Garnier Jean-Guillaume, Harold Denise, Fitzpatrick Annette L., Valladares Otto, Moutet Marie-Laure, Gerrish Amy, Smith Albert V., Qu Liming, Bacq Delphine, Denning Nicola, Jian Xueqiu, Zhao Yi, Del Zompo Maria, Fox Nick C., Choi Seung-Hoan, Mateo Ignacio, Hughes Joseph T., Adams Hieab H., Malamon John, Sanchez-Garcia Florentino, Patel Yogen, Brody Jennifer A., Dombroski Beth A., Naranjo Maria Candida Deniz, Daniilidou Makrina, Eiriksdottir Gudny, Mukherjee Shubhabrata, Wallon David, Uphill James, Aspelund Thor, Cantwell Laura B., Garzia Fabienne, Galimberti Daniela, Hofer Edith, Butkiewicz Mariusz, Fin Bertrand, Scarpini Elio, Sarnowski Chloe, Bush Will S., Meslage Stéphane, Kornhuber Johannes, White Charles C., Song Yuenjoo, Barber Robert C., Engelborghs Sebastiaan, Sordon Sabrina, Voijnovic Dina, Adams Perrie M., Vandenberghe Rik, Mayhaus Manuel, Cupples L. Adrienne, Albert Marilyn S., De Deyn Peter P., Gu Wei, Himali Jayanadra J., Beekly Duane, Squassina Alessio, Hartmann Annette M., Orellana Adelina, Blacker Deborah, Rodriguez-Rodriguez Eloy, Lovestone Simon, Garcia Melissa E., Doody Rachelle S., Munoz-Fernadez Carmen, Sussams Rebecca, Lin Honghuang, Fairchild Thomas J., Benito Yolanda A., Holmes Clive, Karamujić-Čomić Hata, Frosch Matthew P., Thonberg Hakan, Maier Wolfgang, Roshchupkin Gennady, Ghetti Bernardino, Giedraitis Vilmantas, Kawalia Amit, Li Shuo, Huebinger Ryan M., Kilander Lena, Moebus Susanne, Hernández Isabel, Kamboh M. Ilyas, Brundin RoseMarie, Turton James, Yang Qiong, Katz Mindy J., Concari Letizia, Lord Jenny, Beiser Alexa S., Keene C. Dirk, Helisalmi Seppo, Kloszewska Iwona, Kukull Walter A., Koivisto Anne Maria, Lynch Aoibhinn, Tarraga Lluís, Larson Eric B., Haapasalo Annakaisa, Lawlor Brian, Mosley Thomas H., Lipton Richard B., Solfrizzi Vincenzo, Gill Michael, Longstreth W. T., Montine Thomas J., Frisardi Vincenza, Diez-Fairen Monica, Rivadeneira Fernando, Petersen Ronald C., Deramecourt Vincent, Alvarez Ignacio, Salani Francesca, Ciaramella Antonio, Boerwinkle Eric, Reiman Eric M., Fievet Nathalie, Rotter Jerome I., Reisch Joan S., Hanon Olivier, Cupidi Chiara, Andre Uitterlinden A. G., Royall Donald R., Dufouil Carole, Maletta Raffaele Giovanni, de Rojas Itziar, Sano Mary, Brice Alexis, Cecchetti Roberta, George-Hyslop Peter St, Ritchie Karen, Tsolaki Magda, Tsuang Debby W., Dubois Bruno, Craig David, Wu Chuang-Kuo, Soininen Hilkka, Avramidou Despoina, Albin Roger L., Fratiglioni Laura, Germanou Antonia, Apostolova Liana G., Keller Lina, Koutroumani Maria, Arnold Steven E., Panza Francesco, Gkatzima Olymbia, Asthana Sanjay, Hannequin Didier, Whitehead Patrice, Atwood Craig S., Caffarra Paolo, Hampel Harald, Quintela Inés, Carracedo Ángel, Lannfelt Lars, Rubinsztein David C., Barnes Lisa L., Pasquier Florence, Frölich Lutz, Barral Sandra, McGuinness Bernadette, Beach Thomas G., Johnston Janet A., Becker James T., Passmore Peter, Bigio Eileen H., Schott Jonathan M., Bird Thomas D., Warren Jason D., Boeve Bradley F., Lupton Michelle K., Bowen James D., Proitsi Petra, Boxer Adam, Powell John F., Burke James R., Kauwe John S. K., Burns Jeffrey M., Mancuso Michelangelo, Buxbaum Joseph D., Bonuccelli Ubaldo, Cairns Nigel J., McQuillin Andrew, Cao Chuanhai, Livingston Gill, Carlson Chris S., Bass Nicholas J., Carlsson Cynthia M., Hardy John, Carney Regina M., Bras Jose, Carrasquillo Minerva M., Guerreiro Rita, Allen Mariet, Chui Helena C., Fisher Elizabeth, Masullo Carlo, Crocco Elizabeth A., DeCarli Charles, Bisceglio Gina, Dick Malcolm, Ma Li, Duara Ranjan, Graff-Radford Neill R., Evans Denis A., Hodges Angela, Faber Kelley M., Scherer Martin, Fallon Kenneth B., Riemenschneider Matthias, Fardo David W., Heun Reinhard, Farlow Martin R., Kölsch Heike, Ferris Steven, Leber Markus, Foroud Tatiana M., Heuser Isabella, Galasko Douglas R., Giegling Ina, Gearing Marla, Hüll Michael, Geschwind Daniel H., Gilbert John R., Morris John, Green Robert C., Mayo Kevin, Growdon John H., Feulner Thomas, Hamilton Ronald L., Harrell Lindy E., Drichel Dmitriy, Honig Lawrence S., Cushion Thomas D., Huentelman Matthew J., Hollingworth Paul, Hulette Christine M., Hyman Bradley T., Marshall Rachel, Jarvik Gail P., Meggy Alun, Abner Erin, Menzies Georgina E., Jin Lee-Way, Leonenko Ganna, Real Luis M., Jun Gyungah R., Baldwin Clinton T., Grozeva Detelina, Karydas Anna, Russo Giancarlo, Kaye Jeffrey A., Kim Ronald, Jessen Frank, Kowall Neil W., Vellas Bruno, Kramer Joel H., Vardy Emma, LaFerla Frank M., Jöckel Karl-Heinz, Lah James J., Dichgans Martin, Leverenz James B., Mann David, Levey Allan I., Pickering-Brown Stuart, Lieberman Andrew P., Klopp Norman, Lunetta Kathryn L., Wichmann H-Erich, Lyketsos Constantine G., Morgan Kevin, Marson Daniel C., Brown Kristelle, Martiniuk Frank, Medway Christopher, Mash Deborah C., Nöthen Markus M., Masliah Eliezer, Hooper Nigel M., McCormick Wayne C., Daniele Antonio, McCurry Susan M., Bayer Anthony, McDavid Andrew N., Gallacher John, McKee Ann C., van den Bussche Hendrik, Mesulam Marsel, Brayne Carol, Miller Bruce L., Riedel-Heller Steffi, Miller Carol A., Miller Joshua W., Al-Chalabi Ammar, Morris John C., Shaw Christopher E., Myers Amanda J., Wiltfang Jens, O’Bryant Sid, Olichney John M., Alvarez Victoria, Parisi Joseph E., Singleton Andrew B., Paulson Henry L., Collinge John, Perry William R., Mead Simon, Peskind Elaine, Cribbs David H., Rossor Martin, Pierce Aimee, Ryan Natalie S., Poon Wayne W., Nacmias Benedetta, Potter Huntington, Sorbi Sandro, Quinn Joseph F., Sacchinelli Eleonora, Raj Ashok, Spalletta Gianfranco, Raskind Murray, Caltagirone Carlo, Bossù Paola, Orfei Maria Donata, Reisberg Barry, Clarke Robert, Reitz Christiane, Smith A David, Ringman John M., Warden Donald, Roberson Erik D., Wilcock Gordon, Rogaeva Ekaterina, Bruni Amalia Cecilia, Rosen Howard J., Gallo Maura, Rosenberg Roger N., Ben-Shlomo Yoav, Sager Mark A., Mecocci Patrizia, Saykin Andrew J., Pastor Pau, Cuccaro Michael L., Vance Jeffery M., Schneider Julie A., Schneider Lori S., Slifer Susan, Seeley William W., Smith Amanda G., Sonnen Joshua A., Spina Salvatore, Stern Robert A., Swerdlow Russell H., Tang Mitchell, Tanzi Rudolph E., Trojanowski John Q., Troncoso Juan C., Van Deerlin Vivianna M., Van Eldik Linda J., Vinters Harry V., Vonsattel Jean Paul, Weintraub Sandra, Welsh-Bohmer Kathleen A., Wilhelmsen Kirk C., Williamson Jennifer, Wingo Thomas S., Woltjer Randall L., Wright Clinton B., Yu Chang-En, Yu Lei, Saba Yasaman, Pilotto Alberto, Bullido Maria J., Peters Oliver, Crane Paul K., Bennett David, Bosco Paola, Coto Eliecer, Boccardi Virginia, De Jager Phil L., Lleo Alberto, Warner Nick, Lopez Oscar L., Ingelsson Martin, Deloukas Panagiotis, Cruchaga Carlos, Graff Caroline, Gwilliam Rhian, Fornage Myriam, Goate Alison M., Sanchez-Juan Pascual, Kehoe Patrick G., Amin Najaf, Ertekin-Taner Nilifur, Berr Claudine, Debette Stéphanie, Love Seth, Launer Lenore J., Younkin Steven G., Dartigues Jean-Francois, Corcoran Chris, Ikram M. Arfan, Dickson Dennis W., Nicolas Gael, Campion Dominique, Tschanz JoAnn, Schmidt Helena, Hakonarson Hakon, Clarimon Jordi, Munger Ron, Schmidt Reinhold, Farrer Lindsay A., Van Broeckhoven Christine, C. O’Donovan Michael, DeStefano Anita L., Jones Lesley, Haines Jonathan L., Deleuze Jean-Francois, Owen Michael J., Gudnason Vilmundur, Mayeux Richard, Escott-Price Valentina, Psaty Bruce M., Ramirez Alfredo, Wang Li-San, Ruiz Agustin, van Duijn Cornelia M., Holmans Peter A., Seshadri Sudha, Williams Julie, Amouyel Phillippe, Schellenberg Gerard D., Lambert Jean-Charles, Pericak-Vance Margaret A.. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics. Vol. 51(3):414–430. 2019. Springer Science and Business Media LLC. [Cross Ref]

            4. Kling Mitchel A., Goodenowe Dayan B., Senanayake Vijitha, MahmoudianDehkordi Siamak, Arnold Matthias, Massaro Tyler J., Baillie Rebecca, Han Xianlin, Leung Yuk‐Yee, Saykin Andrew J., Nho Kwangsik, Kueider‐Paisley Alexandra, Tenenbaum Jessica D., Wang Li‐San, Shaw Leslie M., Trojanowski John Q., Kaddurah‐Daouk Rima F.. Circulating ethanolamine plasmalogen indices in Alzheimer's disease: Relation to diagnosis, cognition, and CSF tau. Alzheimer's & Dementia. Vol. 16(9):1234–1247. 2020. Wiley. [Cross Ref]

            5. Stewart Adam Michael, Braubach Oliver, Spitsbergen Jan, Gerlai Robert, Kalueff Allan V.. Zebrafish models for translational neuroscience research: from tank to bedside. Trends in Neurosciences. Vol. 37(5):264–278. 2014. Elsevier BV. [Cross Ref]

            6. Xi Yanwei, Noble Sandra, Ekker Marc. Modeling Neurodegeneration in Zebrafish. Current Neurology and Neuroscience Reports. Vol. 11(3):274–282. 2011. Springer Science and Business Media LLC. [Cross Ref]

            7. Kalueff Allan V., Stewart Adam Michael, Gerlai Robert. Zebrafish as an emerging model for studying complex brain disorders. Trends in Pharmacological Sciences. Vol. 35(2):63–75. 2014. Elsevier BV. [Cross Ref]

            8. van Amerongen Yvonne F., Roy Upasana, Spaink Herman P., de Groot Huub J.M., Huster Daniel, Schiller Jürgen, Alia A.. Zebrafish Brain Lipid Characterization and Quantification by<sup>1</sup>H Nuclear Magnetic Resonance Spectroscopy and MALDI-TOF Mass Spectrometry. Zebrafish. Vol. 11(3):240–247. 2014. Mary Ann Liebert Inc. [Cross Ref]

            9. Fraher Daniel, Sanigorski Andrew, Mellett Natalie A., Meikle Peter J., Sinclair Andrew J., Gibert Yann. Zebrafish Embryonic Lipidomic Analysis Reveals that the Yolk Cell Is Metabolically Active in Processing Lipid. Cell Reports. Vol. 14(6):1317–1329. 2016. Elsevier BV. [Cross Ref]

            10. Chen Zhen, Jia Jiaping, Wu Yue, Chiba Hitoshi, Hui Shu-Ping. LC/MS analysis of storage-induced plasmalogen loss in ready-to-eat fish. Food Chemistry. Vol. 383:2022. Elsevier BV. [Cross Ref]

            11. Ferreri Carla, Ferocino Alessandra, Batani Gessica, Chatgilialoglu Chryssostomos, Randi Vanda, Riontino Maria Vittoria, Vetica Fabrizio, Sansone Anna. Plasmalogens: Free Radical Reactivity and Identification of Trans Isomers Relevant to Biological Membranes. Biomolecules. Vol. 13(5)2023. MDPI AG. [Cross Ref]

            12. Dorninger Fabian, Berger Johannes, Honsho Masanori. Editorial: Solving the plasmalogen puzzle—From basic science to clinical application. Frontiers in Cell and Developmental Biology. Vol. 11:2023. Frontiers Media SA. [Cross Ref]

            Comments

            Comment on this article